Optical Frequency Domain Visualization of Electron Beam Driven Plasma Wakefields.

NATIONAL LABORATORY

Rafal Zgadzaj, Michael C. Downer, ^(UT Austin) Patrick Muggli ^(USC) Vitaly Yakimenko, Karl Kusche, Marcus Babzien, Mikhail Fedurin ^(BNL/ATF)

N. H. Matlis, et al., Nature Physics, 2, 749 - 753 (2006)

Financial Support: Department of Energy

Blumenfeld et al., Nature 445, 741-744 (2007).

FDI: Temporal Overlap in Spectrometer

Interferogram

FDI – Frequency Domain Interferometric reconstruction of laser-driven wakes

Tokunaga et al., Optics Lett. 17, 1131 (92) Siders et al., PRL 76, 3570 (96) Marqués et al., PRL 78, 3463(97) Kotaki et al., Phys. Plasmas 9, 1392 (02)

950

1000

FDH – Frequency Domain Holographic reconstruction of laser-driven wakes

- Single shot
- Temporal and transverse resolution
- Signal to noise good for large n_e
- Prone to artifacts for low signal levels
 - Ionization front
 - Continuum generation
 - Second harmonic
 - Pixelation
 - *Etc*.

N. H. Matlis, et al., "Snapshots of laser wakefields", Nature Physics, 2, 749 - 753 (2006)

Parameters of BNL ATF experiment

Patric Muggli, Resonant excitation of plasma wakefields, WG4, AAC 2010

Parameters of BNLATF experiment with FDH

Patric Muggli, Resonant excitation of plasma wakefields, WG4, AAC 2010 $\Delta \varphi = (2\pi/\lambda_{pr})\Delta nL \sim 5.6 \times 10^{-3} \text{ to } 5.6 \times 10^{-2} \text{ rad}$ H2 plasma n_e ~ 10¹⁶ to 10¹⁷ cm⁻³ $\tau_{p} \sim 1.1 \text{ ps to } 0.35 \text{ ps}$ $\Delta n_{e}/n_{e} \sim 10^{-2}$

Yb-fiber laser $\tau \sim 200 fs, \ \lambda \sim 1 \mu m$

aser

Fiber optic from laser clean room

Patric Muggli, Resonant excitation of plasma wakefields, WG4, AAC 2010

EO time delay and bunch shape measurement

Tilborg et al., WG5, AAC 2010 Matlis et al., Plenary, AAC 2010 A. L. Cavalieri, "Clocking Femtosecond X Rays," PRL **94,** 114801 (2005).

EO time delay and bunch shape measurement

Tilborg et al., WG5, AAC 2010 Matlis et al., Plenary, AAC 2010 A. L. Cavalieri, "Clocking Femtosecond X Rays," PRL **94,** 114801 (2005).

EO time delay and bunch shape measurement

Tilborg et al., WG5, AAC 2010 Matlis et al., Plenary, AAC 2010 A. L. Cavalieri, "Clocking Femtosecond X Rays," PRL **94,** 114801 (2005).

Frequency Domain Streak Camera

Frequency Domain Streak Camera

Simulation: Austin Yi, Gennady Shvets, UT Austin

Frequency Domain Streak Camera

Optical Bullets in the Blowout Regime

Dong, et al., "Formation of Optical Bullets in Laser-Driven Plasma Bubble Accelerators", Phys. Rev. Lett. 104, 134801 (2010) Also: WG1, AAC 2010

Conclusion

- Direct measurement of plasma wave structure
- Initial FDI measurements, but probably FDH necessary
- Correlation of local plasma wave and microbunch amplitudes
- Direct observation of resonant wake enhancement in the multibunch experiments

Looking Toward the Future: FACET

- Direct observation of different structures of electron and positron driven wakes.
- Standard noninvasive diagnostic complementing particle diagnostics in next generation of PWFA experiments.

Financial Support: Department of Energy

